Effect of Introducing Detailed Anchor-Point Descriptors on Measurement of Health-Related Quality of Life Using the EQ-5D

Abstract:

Introduction: Patients may not give much thought to the best and worst imaginable health state anchors at either end of the EQ-5D health state thermometer visual analogue scale (VAS) during the standard completion of the EQ-5D. This may cause patients to give inappropriate responses which may be particularly susceptible to response shift in longitudinal assessments due to recalibration, reconceptualisation or reprioritisation of components of health not previously considered.

Procedure: Older hospital patients undergoing rehabilitation (n=150) completed survey interviews which included the EQ-5D then a series of questions investigating whether they had considered the best or worst health states (VAS anchors) before responding. All participants were then given an anchor point stabilization strategy for each of the two VAS anchor points (in random order), patients were advised they could either keep their original health state VAS response or change their answer after a description for each anchor point was read. Best and worst health state descriptors used were those from the Assessment of Quality of Life (AQoL) instrument.

Results: A majority of patients reported they had not specifically considered either anchor point, but for those who did, their thoughts commonly focused on physical function and pain. The anchor point stabilisation strategy caused most patients to change their response. After reading a description of possible worst and best imaginable health states most patients moved their VAS response higher and lower respectively however some patients did also move their responses higher after a description of the best health state. After both anchor descriptions were completed the majority of patients VAS report of their current health state differed from their original report by a margin of 5-40 points (100 point scale).

Conclusion: Patient perceived health-related quality of life measurement can be acutely influenced by provision of detailed anchor point descriptors.